- Posts: 7163
- Thank you received: 21
Scientists announced today (Dec. 13) that they're closing in on the elusive Higgs boson, a subatomic particle that's been predicted but never detected. Now researchers at the world's largest particle accelerator, the Large Hadron Collider in Geneva, Switzerland, say they've narrowed down the mass range of the Higgs, and even see preliminary hints that it might exist.
If physicists can definitively detect the Higgs boson and determine its mass, the discovery would have wide-reaching implications. Here are five of the biggest.
Read the rest of the article at...
http://www.livescience.com/17433-implic ... y-lhc.html
Please Log in or Create an account to join the conversation.
The news from Geneva this morning is in. Essentials: what we’re seeing is pretty consistent with the existence of a Higgs boson around 123-126 GeV. The data aren’t nearly conclusive enough to say that it’s definitely there. But the LHC is purring along, and a year from now we’ll know a lot more.
It’s like rushing to the tree on Christmas morning, ripping open a giant box, and finding a small note that says “Santa is on his way! Hang in there!”
Let’s put it this way: if we were testing a theory that everyone thought was wrong, rather than one that everyone thinks is right, nobody would take these results as strong indications that the idea was correct. We have a strong theoretical bias that the Higgs exists and is somewhere close to this mass range, so it’s completely reasonable to think that we are seeing hints (tantalizing ones!) that it’s there, but wait-and-see is still the right attitude.
The Atlas results suggest a Higgs particle weighing 125 to 126 GeV, at a confidence level of 3.6 standard deviations, or 3.6σ. The CMS team saw potential around 124 GeV, with a confidence level of 2.6σ. In particle physics, a true discovery calls for a five-sigma confidence level, so we’re not quite there yet. A three-sigma result is good enough to say a particle may exist.
Cute bit of trivia in the article as well as to the origin of the nickname for the Higgs boson, "The God Particle" - I chuckled cuz it sounds just like a frustrated scientist. lolThe Standard Model of particle physics lays out the basics of how elementary particles and forces interact in the universe. But the theory crucially fails to explain how particles actually get their mass.
Particles, or bits of matter, range in size and can be larger or smaller than atoms. Electrons, protons and neutrons, for instance, are the subatomic particles that make up an atom.
Scientists believe that the Higgs boson is the particle that gives all matter its mass.
Please Log in or Create an account to join the conversation.
Please Log in or Create an account to join the conversation.
Please Log in or Create an account to join the conversation.
Please Log in or Create an account to join the conversation.